Journal of Organometallic Chemistry, 117 (1976) C81-C84
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

MOLECULAR STRUCTURE OF AN ARENEOLEFINDICARBONYLCHROMIUM CHELATE COMPLEX WITH (2,5-DIMETHYLBENZYL)ALLYL ETHER AS THE CHELATE LIGAND

Yu.T. STRUCHKOV, V.G. ANDRIANOV, A.N. NESMEYANOV, V.V. KRIVYKH, V.S. KAGANOVICH and M.I. RYBINSKAYA*

Institute of Organo-Element Compounds, Academy of Sciences, Vavilova, 28, Moscow 117813 (U.S.S.R.)
(Received June 22nd, 1976)

Summary

(2,5-Dimethylbenzyl)allyl ether produces two diastereomeric pairs of enantiomers with η^{8} coordination of the $\mathrm{Cr}(\mathrm{CO})_{2}$ group; the structure of the principal enantiomeric pair is established by complete X-ray analysis.

We have previously reported [1] the preparation of new chelate areneolefindicarbonylchromium complexes (I). In this work we studied the molecular

(I)
structure of complexes with (2,5-dimethylbenzyl)allyl ether as chelating ligand, in order to elucidate the olefinic group orientation relative to the arene and to determine the chelate ring conformation. (2,5-Dimethylbenzyl)allyl ether was chosen because it has two prochiral groups; which made it possible to form a mixture of diastereomeric areneolefindicarbonylchromium complexes.

The corresponding arenetricarbonylchromium complex was obtained by reaction of the areneolefin with $\mathrm{Cr}(\mathrm{CO})_{6}$ in boiling diglyme. In this case a racemic mixture of complexes II is formed; yield 79\%, oil, $\nu(\mathrm{C} \equiv \mathrm{O}) 1899,1969$ cm^{-1} (cyclohexane). Under UV irradiation a CO ligand is replaced by an olefinic group. Another nonclassical chiral center appeared in the molecule
and the isomeric mixture $I I^{\prime}$ and $I I I '^{\prime \prime}$ was formed. II' $^{\prime} a$ and $I I I^{\prime} b, \Pi I^{\prime \prime}$ a and III'" b are enantiomeric pairs, while compounds III' and III" $^{\prime \prime}$ are diastereoisomers and the latter are also geometric isomers (Scheme 1). The total yield of the mixture of complexes III is 66%, m.p. $132-134^{\circ} \mathrm{C}$ (decomp.), $\nu(\mathrm{C} \equiv \mathrm{O}$) $1870,1925 \mathrm{~cm}^{-1}$. According to PMR spectra the ratio $I I^{\prime} / \mathrm{II}^{\prime \prime}$. is $5: 1$. The enantiomeric pair III'a, II' $^{\prime} \mathbf{b}$ is considerably less soluble and this fact enabled us to obtain the pure racemate by recrystallization from acetone. M.p. $134-135^{\circ} \mathrm{C}$ (with decomp.).

The molecular stereochemistry of racemate ($\mathrm{III}^{\prime} \mathrm{a}, \mathrm{III}^{\prime} \mathrm{b}$) is established by an X-ray structural study. The crystals are monoclinic, space group $P 2_{1 / c}$ with $a=6.626(1), b=12.140(3), c=15.893(4) \AA, \beta=98.12(2)^{\circ}, V=1265.4(6) \AA^{3}$, mol.wt. $=284.3, D_{\mathrm{m}}=1.48, D_{\mathrm{c}}=1.49 \mathrm{~g} . \mathrm{cm}^{-3}$ and $Z=4, \mu=9.4 \mathrm{~cm}^{-1}$
($\lambda \mathrm{MoK}_{\alpha}$). Intensities of the 1452 reflections greater than 2σ were measured with an automatic "Syntex $P \mathbf{2}_{1}$ " (Mo-radiation, graphite monochromator, $\theta / 2 \theta$ scan).

(IIa)

(III'a)

(III'b)
(III"a)

(III"b)

SCHEME 1

The structure was solved by the standard heavy-atom method and refined to $R=0.032$ by the block-diagonal least squares technique in anisotropic approximation (isotropic for hydrogen atoms) localized by difference Fourier.

The coordination of the chromium atom is deduced from that found in benzene tricarbonylchromium (IV) [2] by replacement of one CO group by the ethylenic double bond. Due to its greater volume this ligand causes a decrease in the $\mathrm{OC}-\mathrm{Cr}-\mathrm{CO}$ angle to $84.6(2)^{\circ}$ (Fig . 1). In III mutual orientation of the arene ligands and the three other ligands is staggered and similar to that found in IV and some of its derivatives (Fig. 2).

The distances, $\mathrm{Cr}-\mathrm{C}$ (arene) to carbon atoms having substituents are somewhat longer (2.229-2.278 (3) \AA) than to the other three carbons (2.199-2.216(3) \AA). The distances to atoms bearing Me-groups are the longest and accordingly the benzene ring acquires a boat-like conformation with bending of the $\mathbf{C}(3)$ and $\mathbf{C}(6)$ corners out of the boat plane by 0.030 and $0.040 \AA$ respectively. Substituents are also bent out of this plane: Me groups $C(7)$ by $0.075, C(8)$ outwards by $0.193(4) \AA$ and the methylene group $C(9)$ towards the chromium atom by $0.030(13) \AA$. In IV the benzene ring is planar with almost equal $\mathrm{Cr}-\mathrm{C}$ (arene) distances 2.220-2.240 \AA.

The molecule III is one of the first chromium π-complex with a monoolefinic ligand to be studied by X-ray analysis. In other structurally investigated olefinic complexes, namely Dewar benzene $\left(\mathrm{Me}_{6} \mathrm{C}_{6}\right) \mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{~V})$ [3] and norbornadiene $\left(\mathrm{C}_{7} \mathrm{H}_{8}\right) \mathrm{Cr}(\mathrm{CO})_{3} \cdot \mathrm{PPh}_{3}$ (VI) [4], coordinated double bonds are incorporated in rigid bicyclic systems. The double bond in III is coordinated symmetrically and the $\mathrm{Cr}-\mathrm{C}$ distances 2.228 and $2.213 \AA$ are significantly shorter than in V (2.33 and $2.34 \AA$) and VI ($2.225-2.376 \AA$). However the length of the $\mathbf{C}(11)-\mathbf{C}(12)$ double bond itself (1.378(5) \AA) is

Fig.1. Molecular geometry of $3.5-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \cdot \mathrm{Cr}(\mathrm{CO})_{2}$.

Fig-2. Projection of atoms onto the benzene ring plane.
comparable with values found in related compounds (1.36A in V and 1.350 and $1.407 \AA$ in VI). It is essential to note that the double bond is almost parallel (angle 1.3°) to the $\mathbf{C}(1)-\mathbf{C}(6)$ bond of the arene ligand (Fig. 2). Evidently, in molecules of the other enantiomeric pair (III' $\mathrm{a}, \mathrm{III} \mathrm{\prime}$ 'b) the double bond should be parallel to the neighbouring arene bond $\mathbf{C (1) - C (2) .}$

The $\mathrm{C}(1), \mathrm{C}(9), \mathrm{O}(1), \mathrm{C}(10), \mathrm{C}(11)$ bridge connecting the benzene ring and the double bond is notably strained. Bond angles in this bridge are increased (e.g. $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}$ angles to $113-116^{\circ}$) and torsional angles are far from ideal ($+66.1,-98.5$ and -30.4° for the $C(9)-O(1), O(1)-C(10)$ and $\mathrm{C}(10)-\mathrm{C}(11)$ bonds respectively).

References

[^0]
[^0]: 1 A.N. Nesmeyanov, M.I. Rybinskaya, V.V. Krivykh and V.S. Kaganovich, J. Organometal. Chem., 93 (1975) C8.
 2 B. Rees and P. Coppens. J. Organometal. Chem., 42 (1972) $C 102$.
 3 G. Huttner and O.S. Mills, J. Organometal. Chem., 29 (1971) 275.
 4 J.P. Declerq, G. Germain, M. van Meerssche and S.A. Chawdhury, Acta Crystallogr., B31 (1975) 2896.

